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1. Of the many different problems in clustering 

and pattern recognition we have chosen to examine 
several which have the following common features: 

The objective is to partition the indivi- 
duals of a specified population into sub- 
sets. 

The permitted partitions may depend only 
on the values of a specified measurement 
variable X defined for this population. 

2. The properties above imply that our problems 
are equivalent to partitioning the space of all 
possible values of X; in particular, two indivi- 
duals with the same X value must not be in dif- 
ferent subsets of the partition. Quite a variety 
of clustering and pattern recognition problems 
can be regarded in this framework and they are 
distinguished by what we hope to accomplish with 
our chosen partition. 

3. Definitions: A subset of X values will be 
called a stratum, especially when it refers to 
one of the subsets of our chosen partition. A 
collection of individuals whose X values all 
belong to the same stratum will be called a 
cluster. So, for a given stratification of X 
and a given group of individuals, there is a 
unique decomposition of the group into clusters. 
The definition of a cluster and a stratum are 
equivalent only in the case of a finite popula- 
tion where no two individuals assume the same X 
value. 

4. Often, what we hope to accomplish with a 
chosen partition is not well articulated, as we 
shall see later. Occasionally, we can be quite 
explicit however, as the next several examples 
will illustrate. 

5. Equal probability partitions. Here the ob- 
jective is to get k strata each with probability 
content k; i.e., each stratum contains an equal 
fraction of the population. Without further re- 
quirements this objective is easily achieved, in 

general, if we know enough about the distribution 
of X values. The problem becomes interesting 
when this distribution is unspecified. Suppose 
X has a continuous distribution on a Euclidean 
space, and we have a random sample of m indi- 
viduals with observed values X1,X2 
Fraser [1] has given a general class of partition- 
ing procedures, based on the sample, with the 
property that the expected probability content of 
each of the strata is r /(m +l) where r is any 
specified divisor of m+l. If X is real -valued, 
for example, the sample points themselves parti- 
tion the line into m +l intervals, each with ex- 
pected probability content +l). 
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6. As a second example with an explicit objec- 
tive consider the k -means problem - as it is 

sometimes called. What we need to specify is k, 

the number of strata, and a distance function p 

defined on the space of X. Once p has been 
specified, the mean µh of stratum h is defined 
to be that point in X space which minimizes 
Vh E[p2(X,µh)lX stratum h]. If is the 
probability content of stratum h, then the total 
dispersion within strata is taken to be 
V = EWhVh. The objective is to choose a parti- 
tion which minimizes this total within strata 
dispersion. (For example if p is Euclidean 
distance then µh is the usual stratum center 
of gravity.) 

7. MacQueen [2] has discussed this problem and 
indicated how it might arise in real situations. 
One illustration not developed there concerns 
estimation of the mean of X when X is real - 
valued: If the allocation of a random sample to 
strata is proportional to the stratum weights, 
then the mean -square -error of the sample mean is 
indeed proportional to V if p2(a,b) is taken 

to be (a -b)2. 

7a. In practice, when we are estimating the un- 
known mean value of X in a population, it will 
not be possible to stratify the sample on the 
values of X itself. Instead what is usually 
done is to find a variable Y which is strongly 
correlated with X and whose distribution is 
pretty well known, then stratify according to Y 
values. In principle, there exists an optimum 

partition of Y which will minimize the V 
quantity for the X variable. 

8. If the allocation of the sample to strata in 
the preceding example is according to Neyman 
optimal allocation (see Cochran [3]) then the 
appropriate quantity to minimize is EWh Ç. 
Dalenius and Hodges [4] have, for this case, 
obtained an approximate solution to the parti- 
tioning problem: On the assumption that k is 

fairly large, the distribution of X (assumed 
continuous) will be nearly uniform within strata. 
Using this uniformity, the optimum stratum 
boundaries can be approximated by taking equally 
spaced points on the scale 

z(X) = 

where f is the density function of X. 

9. We now turn to some partitioning problems 
where the objective is not so explicit; the ones 

we will be discussing frequently go under the 
name of cluster analysis. When one tries to 



articulate his objective in doing cluster analysis, 
one tends to come up often with something like - 

to chop up a supposed multimodal distribution of 
X values by putting one mode in each stratum. 
Often underlying this objective is the notion of 
trying to represent the population as a mixture 
of intrinsically interesting subpopulations - 

each with its distinctive distribution of X 
values. 

10. We might try to model the situation of the 
last paragraph in the following approximate way: 
There are k simply connected sets (islands) in 
X -space which are at a positive distance from 
each other and on which the density of X is 
positive; everywhere else the density is zero. 
See Fig. 1. The objective is to have each stratum 
of our chosen partition contain one island. It 
is assumed, of course, that a distance has been 
defined on X space. If the population is 
finite this model may not seemtoo helpful, but 
such cases it is sometimes possible to think of 
the population as having been sampled from a 
superpopulation with a continuous X distribution 
of the above type. This model is surely an over- 
simplification of most real situations; but if 
our partitioning procedures can not do well in 
such simplified problems, they are not likely to 
do well in the less well resolved practical sit- 
uations. Such a model might, therefore, be useful 
in a comparative study of partitioning procedures. 

11. If we had this kind of population in mind 
and a random sample from it, what sort of proce- 
dures are reasonable for dividing the sample into 
clusters (recall the definitions of Par. 3). If 
the sample is correctly clustered, then we might 
expect the individuals within a cluster to have 
X values close to each other, whereas distances 
between clusters should be fairly large. Consi- 
derations of this kind have led various people 
to fix on within -or between -cluster distance 
criteria as a means of evaluating any given 
partition. We will call such criteria C 
criteria, generically,and give some examples 

Fig. 1. The shaded region is where the density 
of X- values is positive; it is an example of the 
model mentioned in Par. 10. 

41 

below. The corresponding procedure then tries 
to find a partition which optimizes (maximize 
or minimize) the criterion C - as a substitute 
for the less explicit objectives of Par. 9 and 
10. 

12. One example of a C criterion is the total 
within strata dispersion, the quantity V of 

Par. 6. A similar more widely used C criter- 

ion is W, the determinant of the pooled within 

strata covariance matrix, for X variables 
defined on a Euclidean space. Specifically, if 

Sh is the covariance matrix conditional on X 
being in stratum h, and Wh is the weight of 
stratum h, then W = det(EW Sh). We would 
then try to find a minimum or a minimum V 
partition. Minimizing W or V also has a 
tendency to maximize the average distance be- 
tween strata as measured by the distance between 
the stratum means. The V and W and similar 
criteria have been explored and used in this way 
by Friedman and Rubin [5] among others. For 
example, the criterion trace (EWhSh) is some- 
times suggested; it is not often recognized that 
this is equivalent to MacQueen's V when 
Euclidean distance is used to compute V. 

13. Whether minimizing V or W gives us the 
kind of partition we really want is at least 
sometimes open to question. Unfortunately, it 
is all too easy to construct examples where such 
minimizing does not divide up multimodal distri- 
butions in the desired way. In particular, let 
X be real valued and have zero density every- 
where except on the intervals (0,.3) and (.4, 
1) where it is constant. See Fig. 2. If we 
were smart enough to have chosen k = 2, then 
the articulation of the objective of Par. 9 
would be to partition the line into two half - 
lines with the boundary point between 0.3 and 
0.4. However, this partition actually gives a 
larger (worse) value for the V or W criter- 
ion than the partition with boundary point at 
0.5, say. One might well regard this as pecu- 
liar or unsatisfactory. 

14. Another example is illustrated in Figure 3. 
It shows a finite population of 10 individuals 
taking on X values in the unit square. Two 

selected partitions for k =2 are also shown. 
Although we might feel happier with the first 
of the two partitions, it is the second one which 
gives a better (smaller)value for V or W. 

This'example hints at the care one must exercise 
in choosing a C- criterion, if this is the 
desired approach. Part of the problem here is 
that both V and W may not work well when the 
islands differ appreciably in size or shape. 

15. The actual calculation of an optimum C 

partition, given the distribution of X, is in 

general a very difficult mathematical task. If 
the population is finite, or if it is infinite 
but there are only a finite number of different 
X- values in the population, then the number of 
possible partitions of the X values into k 
sets is also finite. In principle, it is then 
possible to compute C for all possible parti- 
tions and thus find the optimum C partitions. 



However, if there are m different X- values 
then there are k: partitions to enumerate 
for each fixed k - an unreasonable task if m 
is any size at all. 

16. Instead of enumerating to get an optimum C 

partition in this finite case, Fortier and 
Solomon [6] have examined the possibility of 
using the partition which optimizes C among a 
random sample of partitions. Suppose there are 
about 1010 Possible partitions and we take a 
sample of of them. The probability that 
the sample will contain the overall optimum C 

partition (assume it is unique) is still minute, 
viz. 10 -7; but the probability that the best 
partition in the sample is among the best of 

all partitions is very high, viz. 1- (.99)10000 = 

.99995. 

17. Despite the fact that the sampling method 
is likely to give a partition with a very good 
C, it seems from the Fortier and Solomon study 
that very good is not good enough. In the first 
place partitions with even better C can be ob- 
tained by various simple ad hoc procedures to be 
discussed in Par. 32. In the second place it 
seems that the distribution of C values has a 
very long thin tail, or that even slightly sub- 
optimal C values may correspond to unappealing 
partitions. 

18. Although Fortier and Solomon used a parti- 
cular C criterion not discussed here, we feel 
that these conclusions about the sampling of 
partitions have more general validity. However, 
if we know that an optimum C partition must 
have certain properties, then we can restrict our 
sampling to those partitions possessing such 
properties. For example, the clusters of an 
optimum partition may have disjoint convex hulls. 
There will be relatively very few such partitions 
and our sampling effort is likely to be muchmore 
successful when so restricted. Of course, it is 

probably hard to come by such properties of 
optimal C partitions; but we can make them up 
anyway so as to be consistent with the real ob- 
jective (See Par. 9) - which, after all, is not 
the optimization of C. 

19. As a simple example consider the finite 
population of Figure 3 again. With k=2 there 
are 512 possible unrestricted partitions. With 
the convexity restriction of the preceding para- 
graph there remain only m(m -l) partitions to 
consider, or in this example only 90. 

20. Other approaches to find optimum C parti- 
tions have been explored by Friedman and Rubin 
[5] and a good list of references is contained 
there. Common to these approaches is that one 
starts with a given partition, modifies it 
according to a fixed procedure, and ends up with 
new partition with a better C value. The 
modification procedure is iterated until it 
reaches a stable partition, i.e., one which is 
unaffected by the modification. It is then said 
to have converged and the resulting stable parti- 
tion becomes a candidate. For example, for a 
given partition into k clusters of a finite 
population in Euclidean space, the cluster means 
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and the pooled within clusters covariance S are 
computed. The Mahalanobis distance of each 
individual to each of the cluster means is then 
also computed. The modification procedure con- 

sists of reassigning each individual to the 
cluster to whose mean it is closest. This 
guarantees that the value of the criterion 
function W of Par. 12, the determinant of the 
pooled within clusters covariance matrix, will 
be reduced. However, there are many stable 
partitions for any given configuration of X 
values, some good and some not so good. Any one 
of them can be reached by a suitable input parti- 
tion. Of course, the minimum W partition is 
a stable partition, also. 

21. Although the modification procedure guaran- 
tees a sequence of partitions with decreasing 
W, the final stable partition of the sequence 
may be nowhere near a minimum W partition. 

Of course, the modification procedure could be 
used with several different input partitions, 
then we can choose the best of the output stable 
partitions. Indeed, such modifications routines 
can be combined with Fortier -Solomon sampling of 
input partitions. Figure 3 shows the final 
result of using the modification procedure of 
the last paragraph, starting from two different 
initial partitions. A recent application is 
reported by Demirmen [7] who used the technique 
to "improve" rock classifications. Demirmen 
also wrote an efficient IBM 360 computer program 
to implement the technique. 

22. In summary, we see that replacing a gen- 
eral clustering objective of the type in Par. 9 

densït 
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Stratu.m 

Fig. 2. The X distribution of Par. 13 and two 
different partitions of X. If we were trying 
to minimize W (or V), the second partition 
would be judged better. 



by a specific objective which seeks to optimize 
the value of V or W may or may not be a rea- 
sonable thing to do. The state of the art is such 
that we don't always know when it is reasonable. 
Furthermore, we don't yet have proven efficient 
methods for finding optimum V or W partitions, 
even when we do think it is reasonable. 

23., As an alternative to V or W, we might 
look for a C criterion which is especially 
tailored to do well for models of the type in 
Par. 10. Recall that the islands are assumed 
to be a positive distance apart. It seems more 
reasonable then to measure distance between strata 
in terms of the minimum distance between any pair 
of individuals from different strata - rather than 
in terms of the distance between stratum means 
which is implied in the use of V or W. 

24. Specifically, let the minimum distance be- 
tween stratum h and stratum i be denoted by 
Rhi. For any subgroup of m > 1 individuals 
there will be a subdivision into two strata which 
is optimal in the sense that R is maximized 
over all partitions of the m X values into two 
sets. This maximum value of R could be taken 
as a measure of the within subgroup distance for 
that subgroup of m individuals. For example, 
in Figure 4 the within distance for cluster 1 is 
21mm, for cluster 2 it is 26 mm, and the R dis- 
tance between the two clusters is 22mm. (Using 
Euclidean distance.) For a chosen partition of 
the whole population we define Rh to be the 
within stratum distance for stratum h. If a 
stratum has only one point take Rh = O. As an 
alternative to W type criteria, we suggest 
using something like Z = min Rhi - Rh. The 
objective now is to find the maximum Z parti- 
tion of the population. 

25. Maximizing criteria like Z is likely to be 
consistent with the clustering objectives of 
paragraph 9 and 10; especially for fairly large 
samples. This is suggested by the following 
consideration: Suppose our partition did corres- 
pond to the "islands" of the model, then split- 
ting an island would greatly decrease minRhi 
whereas merging two islands would greatly increase 
max Rh. The merit of a Z criterion should not be 
much affected by diversity in the sizes and shapes 
of the islands or the shapes of the distributions 
within islands. The maximum Z partition for 
the population of Figure 3 is the first one shown 
there (A). 

26. Z also has the satisfying property that, 
for any partition, it is computible from the pair - 
wise distances between the points of the sample. 
In fact it bas the property that for any speci- 
fied number k of strata, there is a unique par- 
tition for which the Z value is positive. The 
last statement assumes there are no ties among 
the pairwise distances and implies that this 
unique partition is the optimum one. The proof 
is a little involved and rests on the following 
observations: If any sample is divided into 
two clusters so that the R distance between 
them is maximized then this is an optimum Z 
partition for k=2, and Z is positive; the 
optimum Z partition for k' > k strata is 
always a refinement of the optimum Z partition 
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for k strata; if we have subsets of two strata 
then the distance between the subsets is not 
less than the distance between the strata; 
finally if a single stratum is divided into 

several subsets, then there will be a pair of 
subsets with distance betweeen them not less than 
the within stratum R- distance as defined in Par. 
24. The construction of a proof is now left to 
the reader. 

27. The refinement property of maximum Z parti- 
tions, noted in the last paragraph, suggests a 
simple algorithm for finding them. For, suppose 
we have the best partition for k +l strata; if 

we merge the two nearest strata (in terms of R 

distance), it follows that we will now have the 
best partition for k strata. In particular, 

we can start by assuming that each of m distinct 

X- values of the sample is a cluster unto itself. 
Then, by repeating the process of merging nearest 
clusters m -k times, we will end up with the 
maximum Z partition for k clusters. So we see 
that this particular criterion can be optimized 
in an extraordinarily simple manner. It also 
follows that the quantity max Rh for optimum k 
clusters is equal to the quantity min Rh. for 
optimum k+l clusters, hence the sequence of 
maximum Z values for each k is itself easily 

computed. This would be useful if our choice for 
the number of strata was based on comparing Z 
values for different k. 

28. There is an even more direct and general 
approach to the partitioning problem when the 
population is believed to resemble the model of 
Par. 10. Suppose we could estimate the density 
of X somehow. Then the estimated "islands" 
could be those connected sets in X -space on 
which the estimated density exceeded a certain 
threshhold value; the chosen partition would then 
put one island in each stratum. Note that the 
number of strata is not fixed in advance. A 
naive method of threshholding the density at a 
point X0 in X space is to count the number 
of sample points in a fixed neighborhood around 
Xo. This count can then serve as the thresh - 
holding device. This procedure has been applied 
to the finite population of Figure 3 with cir- 
cular neighborhoods of radius 11 min and a thresh- 
hold of 1 point. The resulting partition is 
shown in Figure 5. 

29. The density threshhold approach and the max- 

imum Z approach are both clearly tailored to 
the partitioning of populations which are more or 
less of the type in Par. 10. We have tried to 

argue that clustering of populations is often 

attempted only because it is believed that such 
a description roughly obtains. But it is clear 
that both of the last named approaches can fall 
down in many situations. 

30. For one, if the sample is small both proce- 
dures become rather sensitive to the actual con- 
figuration of sample X values. The maximum Z 
approach is, in general, sensitive to outlying 
X values; this could possibly be remedied by 
weighting the R distances by the number of 
points involved in the pair of clusters, or a 
similar device. A problem with the model occurs 
when there are relatively high density "bridges" 



between pairs of islands. See Figure 6. We may 
still want such a pair of islands to show up in 
different strata, but the tendency of our last 
suggested procedures would be to lump such con- 
nected islands into a single stratum, even in 
large samples. 

31. We now return to re- examine the algorithm 
used to find maximum Z partitions, as described 
in Par. 27. This algorithm belongs to an interes- 
ting class of stepwise partitioning algorithms 
very much in the spirit of the one used by King 
[8] and by Sokol and Sneath [10]. We will call 
algorithms of this type stratum- merging proce- 
dures. 

Fig. 3. Four partitions of a population of ten 
individuals into two clusters. The partitions 
A* and B* are stable by the method of Par. 20 
and can be reached from initial partitions A and 
B, respectively, in one iteration. The W values 
are (in increasing order) .0047 -B*, .0056-k*, 

44 

32. Suppose we already have a partition of the 
population into k strata (based on X values), 
then we can obtain a partition into k -1 strata 
by merging two of the existing strata into a sin- 
gle stratum. If we specify a function D which 
measures distance between any pair of strata, 
then the natural thing to do would be to merge 
the two strata which are nearest each other. 
Such a merging procedure can be iterated to ob- 
tain a partition with any number of strata less 
than k. In particular, for populations taking 
on only a finite number m of different X 
values, we can get started by considering each 
X -value to be a stratum by itself. If we iterate 
the merging routine with a specified D function 

.0138-A, .0388 -B. The V values are (in 
increasing order) .2515 -B*, .3341-A*, 
.4662 -B. The only partition with a positive Z 
value is partition A, with Z = .04. See Par. 24. 

The scale is 1 inch = .24 units. 



exactly m -k times, we will then end up with 
exactly k strata - for any specified k. 

33. It is clear that when D is taken to be the 
R- distance of Par. 24, then this exactly des- 
cribes the procedure used to find maximum Z 
partitions. But for any arbitrary D measure 
it may not be evident which, if any, criterion 
is being maximized by such a stepwise procedure 
(in the sense of Par. 11). Indeed, the V or 
W criterion discussed in Par. 12 are unlikely 
to be optimized in this way for any choice of 
the cluster distance function D: We might try 
anyways by choosing D to be some measure of 
distance between the stratum means - but the 
stepwise procedure will tend to maximize the 
minimum distance between any pair of means, 
whereas V or W tends to maximize the average 
distance between means. Notwithstanding these 
divergent tendencies, the stepwise procedure may 
still give as good a value of V or W as that 
obtained by the more cumbersome methods of Par. 
16 or Par. 20. Also, such stratum merging pro- 
cedures are always relatively quick and simple 
to execute, and have the virtue of automatically 
generating a whole sequence of suggested parti- 
tions, one for each possible value of k, the 
number of strata. 

34. Solomon [9] has obtained satisfac- 
tory partitions using cluster- merging on 
at least three sets of data, in each case 
basically using distances between means to 
measure distances between strata. King 
himself was partitioning real -valued vari- 
ables (Y ,Y ,... say), and for a distance 
measure between clusters A and B he 
used 

D2=( E E )2£ ES 
jeB ieA jeA ieA jeB ieB 

where Si is the covariance between Y. 

and Y . jThis can be recognized as the 
squarejproduct- moment correlation between 
the average of variables in A and the 
average of variables in B. So, essenti- 
ally, all he needs to be able to. do is to 
estimate the covariance matrix. 

35. Throughout the entire discussion thus far 
we have had freqeunt occasion to refer to the 
computation of distances - for the V criterion 
of Par. 6, for the definition of neighborhoods 
in the density estimation of Par. 28, and in 
many other places. Very little was said expli- 
citly about how distances should be defined and. 
it seems that little can be said. This is an 
especially thorny problem when the X variable 
is of high dimension and it becomes very easy 
to make very poor choices. We would probably 
want certain simple transformations of the 
X- variable to preserve the order relation among 
distances, and we might choose our distance 
function with this in mind. Monotonic trans- 
formations of the distance function will not 
affect minimum Z partitions; however, this is 

not true for the other procedures discussed here. 
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36. If the covariance matrix of a population in 
Euclidean space is S, then the distance between 
points X and X1 in this space can be taken 
as (Xo "1(X0 -X1). This is what is called 
Mahalanobis distance with respect to the overall 
covariance; it is totally invariant under linear 
transformations of X. This distance has been 
used with satisfaction by Solomon [9] for example, 
but one can construct examples where it is ob- 
viously inappropriate. In general, we would have 
a much better idea of an appropriate distance 
measure if we already had the clusters, but this 
just begs the question. The cluster improvement 
procedures discussed in Par. 20 implicitly modify 
an arbitrary distance function to make it more 
appropriate. 

37. The sensitivity of a partitioning procedure 
to the choice of a distance function will tend to 
decrease as the sample gets large and as the di- 
mensionality of X goes down. While we may not 
be able to control our sample size, it might be 
useful to attempt to reduce dimensionality before 
fixing on a distance function. Broadly speaking 
we will need some luck in this anyways. 

38. We have made no attempt so far to cast any of 
the foregoing partitioning problems in a decision 
theoretic framework. If we allow ourselves to 
postulate the existence of an "ideal" partition, 
then our loss could be measured by the extent to 
which the chosen partition differs from an ideal 
one. The measure of discrepancy should depend, 
of course, on the nature and objectives of the 
particular problem in hand. In general, it will 
not be possible to calculate the loss without 
knowing an ideal partition, and if we knew of 
such a partition we would naturally use it and 
incur a minimum loss. Losses are being intro- 
duced, therefore, not because they are a calcul- 
able quantity in real problems, but for two other 
reasons: first, to put the formulation of the 
objectives of partitioning procedures on a firmer 
conceptual basis; second, to provide a means of 
evaluating recommended partitioning procedures 
on artificial examples (with specified ideal 
partitions) as a clue to how they would perform 
on different kinds of real populations. Finally, 
in certain special cases involving random sampling 
from.populations, it may actually be possible to 
calculate the expected loss of a given procedure, 
even when an ideal partition is not known. 

39. As a first example consider the problem of 
partitioning a continuous X distribution into 
sets of equal probability content, the problem 
of Par. 5. If are the actual 
(but unknown) probabilities of the k chosen 
strata, then our loss might be measured by 
L1 = max Ph -min Ph. If we use the Fraser [1] 

method of partitioning into strata, it is actually 
possible to compute the expected loss for this 
method, since the Ph's so generated will have 
a completely specified Dirichlet joint distribu- 
tion. 

40. If the k -means problem of Par. 6 has the 
minimum mean -square -error objective of Par. 7, 
then it might be reasonable to measure the loss 
by something like = log[Vo min - where Vo 



is the computable V value for the chosen parti- 
tion and min V is generally not computable 
except in artificial examples. However, if we 
are trying to find minimum V partitions as an 
approximation to the general clustering objec- 
tives of Par. 9, it is probably inappropriate to 
measure the loss by L2 or anything like it in 
which only V values are involved. A similar 
remark applies to procedures that look for par- 
titions with small W values. See Par. 12. 

41. Here is an approach to the specification of 
an appropriate loss function when general clus- 
tering objectives are involved. Let us call 
individuals who belong to the same stratum of 
an ideal partition of X - friends; individuals 
belonging to different strata of an ideal parti- 
tion will be called enemies. If, in the chosen 
partition, an individual finds that he has f 

friends outside his stratum and e enemies 
within his stratum, his loss is e +f. The total 
loss, for the chosen partition may then 
be taken proportional to the sum of the e +f 
losses over all individuals in the population. 
As an example, if the partition A of Figure 3 
is considered to be "ideal ", then partition A* 
has loss /100 = .18, B has loss .48, and 
B* has loss .32. For infinite populations the 
expected value of an type loss could be 
computed for a random sample of standard size. 

42. The loss function of the last paragraph has 
an interesting characterization, whether for 
finite or infinite populations: Let Al,, 
...Alt, denote the strata of the ideal partition 
and let B1,B2,...,B denote the strata of the 
chosen partition. Nöte that k and k' are 
not necessarily the same. Now let Pi denote 
the probability content of Al, the content 
of Bj, and Pi the content of Ai A en 
it turns Rut that L3 is proportional + 

- The proportionality factor would 
involve only the population or the sample size. 
Note that =0 if and only if the chosen and 
ideal partitions coincide. As an example for an 
infinite population, suppose the ideal partition 
of the population in Figure 2 (k' =2) has its 
boundary point somewhere between X .3 and 
X = .4; then the suboptimum partition with 
boundary at X = .5 (k=2) has = 16/81. 

43. We conclude by extending the notion of an 
ideal partition. At the very outset we noted 
in Par. 1 that our chosen partition of a popula- 
tion must be based on the values of a specified 
measurement variable X. However, in populations 
where more than one individual can take on the 
same X value, it is a non -trivial extension to 
allow the ideal partition to be arbitrary, i.e., 
not to depend on X. The implication is that no 
partition based on X can be perfect in the 
sense that 13 can never be zero, though there 
will still exist a best partition based on X 
with minimum L3. The representation for 
of the preceding paragraph remains valid in this 
extended situation. 

44. example is provided if we want to clus- 
ter a human population into ethnic backgrounds 
but our measurement variable X is the surname. 
Note that this extension plays no role if we are 
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strictly in the islands situation of Par. 10 and 
the objective is to isolate the islands. It is 

when the islands begin to overlap that the exten- 
sion comes into play. One of the reasons for 
introducing the extension was to forge a link 

from the problems we have been discussing to the 

standard Wald assignment or classification prob- 
lem. If the strata of the ideal partition have 
labels 1,2,...,k, and if k is specified, and 
if we are required to attach labels 1,2,...,k 
to the strata of our chosen partition - then we 
have arrived; i.e., it is possible to regard the 
difference between the Wald problem and the prob- 
lems of this paper as the difference between 
having to choose an ordered versus an unordered 
partition of X space. 

Cluster Cluster a. 

Fig.4.This particular partition of the 10 indivi- 
duals into two clusters has within cluster 1 
dispersion R1 21 mm, within cluster 2 disper- 
sion 26 mm, and between clusters dispersion 
R1 2 mm. This gives Z = -4 mm. See Par. 24. 

Fig. 5. The shaded area is where the density of 
X is estimated to be positive by the method of 
Par. 28 with circular neighborhoods of radius 
11mm. The result is a partition into three strata 
as shown. 



Fig. 6. The shaded region is where the density 
of X values is positive; it is an example of 

the model mentioned in Par. 30. 
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